Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temporal Genetic Dynamics of an Experimental, Biparental Field Population of Phytophthora capsici.

Identifieur interne : 000915 ( Main/Exploration ); précédent : 000914; suivant : 000916

Temporal Genetic Dynamics of an Experimental, Biparental Field Population of Phytophthora capsici.

Auteurs : Maryn O. Carlson [États-Unis] ; Elodie Gazave [États-Unis] ; Michael A. Gore [États-Unis] ; Christine D. Smart [États-Unis]

Source :

RBID : pubmed:28348576

Abstract

Defining the contributions of dispersal, reproductive mode, and mating system to the population structure of a pathogenic organism is essential to estimating its evolutionary potential. After introduction of the devastating plant pathogen, Phytophthora capsici, into a grower's field, a lack of aerial spore dispersal restricts migration. Once established, coexistence of both mating types results in formation of overwintering recombinant oospores, engendering persistent pathogen populations. To mimic these conditions, in 2008, we inoculated a field with two P. capsici isolates of opposite mating type. We analyzed pathogenic isolates collected in 2009-2013 from this experimental population, using genome-wide single-nucleotide polymorphism markers. By tracking heterozygosity across years, we show that the population underwent a generational shift; transitioning from exclusively F1 in 2009-2010, to multi-generational in 2011, and ultimately all inbred in 2012-2013. Survival of F1 oospores, characterized by heterozygosity excess, coupled with a low rate of selfing, delayed declines in heterozygosity due to inbreeding and attainment of equilibrium genotypic frequencies. Large allele and haplotype frequency changes in specific genomic regions accompanied the generational shift, representing putative signatures of selection. Finally, we identified an approximately 1.6 Mb region associated with mating type determination, constituting the first detailed genomic analysis of a mating type region (MTR) in Phytophthora. Segregation patterns in the MTR exhibited tropes of sex-linkage, where maintenance of allele frequency differences between isolates of opposite mating type was associated with elevated heterozygosity despite inbreeding. Characterizing the trajectory of this experimental system provides key insights into the processes driving persistent, sexual pathogen populations.

DOI: 10.3389/fgene.2017.00026
PubMed: 28348576
PubMed Central: PMC5347166


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Temporal Genetic Dynamics of an Experimental, Biparental Field Population of
<i>Phytophthora capsici</i>
.</title>
<author>
<name sortKey="Carlson, Maryn O" sort="Carlson, Maryn O" uniqKey="Carlson M" first="Maryn O" last="Carlson">Maryn O. Carlson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityGeneva, NY, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityGeneva, NY, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gazave, Elodie" sort="Gazave, Elodie" uniqKey="Gazave E" first="Elodie" last="Gazave">Elodie Gazave</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University Ithaca, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gore, Michael A" sort="Gore, Michael A" uniqKey="Gore M" first="Michael A" last="Gore">Michael A. Gore</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University Ithaca, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smart, Christine D" sort="Smart, Christine D" uniqKey="Smart C" first="Christine D" last="Smart">Christine D. Smart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University Geneva, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University Geneva, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28348576</idno>
<idno type="pmid">28348576</idno>
<idno type="doi">10.3389/fgene.2017.00026</idno>
<idno type="pmc">PMC5347166</idno>
<idno type="wicri:Area/Main/Corpus">000A07</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A07</idno>
<idno type="wicri:Area/Main/Curation">000A07</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A07</idno>
<idno type="wicri:Area/Main/Exploration">000A07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Temporal Genetic Dynamics of an Experimental, Biparental Field Population of
<i>Phytophthora capsici</i>
.</title>
<author>
<name sortKey="Carlson, Maryn O" sort="Carlson, Maryn O" uniqKey="Carlson M" first="Maryn O" last="Carlson">Maryn O. Carlson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityGeneva, NY, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityGeneva, NY, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gazave, Elodie" sort="Gazave, Elodie" uniqKey="Gazave E" first="Elodie" last="Gazave">Elodie Gazave</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University Ithaca, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gore, Michael A" sort="Gore, Michael A" uniqKey="Gore M" first="Michael A" last="Gore">Michael A. Gore</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University Ithaca, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Smart, Christine D" sort="Smart, Christine D" uniqKey="Smart C" first="Christine D" last="Smart">Christine D. Smart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University Geneva, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University Geneva, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in genetics</title>
<idno type="ISSN">1664-8021</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Defining the contributions of dispersal, reproductive mode, and mating system to the population structure of a pathogenic organism is essential to estimating its evolutionary potential. After introduction of the devastating plant pathogen,
<i>Phytophthora capsici</i>
, into a grower's field, a lack of aerial spore dispersal restricts migration. Once established, coexistence of both mating types results in formation of overwintering recombinant oospores, engendering persistent pathogen populations. To mimic these conditions, in 2008, we inoculated a field with two
<i>P. capsici</i>
isolates of opposite mating type. We analyzed pathogenic isolates collected in 2009-2013 from this experimental population, using genome-wide single-nucleotide polymorphism markers. By tracking heterozygosity across years, we show that the population underwent a generational shift; transitioning from exclusively F
<sub>1</sub>
in 2009-2010, to multi-generational in 2011, and ultimately all inbred in 2012-2013. Survival of F
<sub>1</sub>
oospores, characterized by heterozygosity excess, coupled with a low rate of selfing, delayed declines in heterozygosity due to inbreeding and attainment of equilibrium genotypic frequencies. Large allele and haplotype frequency changes in specific genomic regions accompanied the generational shift, representing putative signatures of selection. Finally, we identified an approximately 1.6 Mb region associated with mating type determination, constituting the first detailed genomic analysis of a mating type region (MTR) in
<i>Phytophthora</i>
. Segregation patterns in the MTR exhibited tropes of sex-linkage, where maintenance of allele frequency differences between isolates of opposite mating type was associated with elevated heterozygosity despite inbreeding. Characterizing the trajectory of this experimental system provides key insights into the processes driving persistent, sexual pathogen populations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28348576</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-8021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in genetics</Title>
<ISOAbbreviation>Front Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Temporal Genetic Dynamics of an Experimental, Biparental Field Population of
<i>Phytophthora capsici</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>26</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fgene.2017.00026</ELocationID>
<Abstract>
<AbstractText>Defining the contributions of dispersal, reproductive mode, and mating system to the population structure of a pathogenic organism is essential to estimating its evolutionary potential. After introduction of the devastating plant pathogen,
<i>Phytophthora capsici</i>
, into a grower's field, a lack of aerial spore dispersal restricts migration. Once established, coexistence of both mating types results in formation of overwintering recombinant oospores, engendering persistent pathogen populations. To mimic these conditions, in 2008, we inoculated a field with two
<i>P. capsici</i>
isolates of opposite mating type. We analyzed pathogenic isolates collected in 2009-2013 from this experimental population, using genome-wide single-nucleotide polymorphism markers. By tracking heterozygosity across years, we show that the population underwent a generational shift; transitioning from exclusively F
<sub>1</sub>
in 2009-2010, to multi-generational in 2011, and ultimately all inbred in 2012-2013. Survival of F
<sub>1</sub>
oospores, characterized by heterozygosity excess, coupled with a low rate of selfing, delayed declines in heterozygosity due to inbreeding and attainment of equilibrium genotypic frequencies. Large allele and haplotype frequency changes in specific genomic regions accompanied the generational shift, representing putative signatures of selection. Finally, we identified an approximately 1.6 Mb region associated with mating type determination, constituting the first detailed genomic analysis of a mating type region (MTR) in
<i>Phytophthora</i>
. Segregation patterns in the MTR exhibited tropes of sex-linkage, where maintenance of allele frequency differences between isolates of opposite mating type was associated with elevated heterozygosity despite inbreeding. Characterizing the trajectory of this experimental system provides key insights into the processes driving persistent, sexual pathogen populations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Carlson</LastName>
<ForeName>Maryn O</ForeName>
<Initials>MO</Initials>
<AffiliationInfo>
<Affiliation>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityGeneva, NY, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gazave</LastName>
<ForeName>Elodie</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gore</LastName>
<ForeName>Michael A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smart</LastName>
<ForeName>Christine D</ForeName>
<Initials>CD</Initials>
<AffiliationInfo>
<Affiliation>Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University Geneva, NY, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Genet</MedlineTA>
<NlmUniqueID>101560621</NlmUniqueID>
<ISSNLinking>1664-8021</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora</Keyword>
<Keyword MajorTopicYN="N">bottleneck</Keyword>
<Keyword MajorTopicYN="N">inbreeding</Keyword>
<Keyword MajorTopicYN="N">mating system</Keyword>
<Keyword MajorTopicYN="N">mating type</Keyword>
<Keyword MajorTopicYN="N">plant pathogen</Keyword>
<Keyword MajorTopicYN="N">population genetics</Keyword>
<Keyword MajorTopicYN="N">self-fertilization</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28348576</ArticleId>
<ArticleId IdType="doi">10.3389/fgene.2017.00026</ArticleId>
<ArticleId IdType="pmc">PMC5347166</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Mar;151(3):1211-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10049936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2000 Feb;155(2):154-167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10686158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):981-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14530-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2003 Jun 29;358(1434):1051-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12831472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Aug;164(4):1635-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1996;34:457-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2004 Jul;93(1):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15218510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jan 15;21(2):263-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Oct;13(10):3021-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2004 Sep;58(9):1891-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15521449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2005 May;76(5):887-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15789306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2006 Jan;167(1):118-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16475104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Aug;38(8):904-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16862161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1921 Mar;6(2):124-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17245959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 1;23(9):1164-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2007 May 22;274(1615):1301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2007 Sep;81(3):559-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17701901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2002 Aug;160(2):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2003 Jun;93(6):738-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2001 Oct;91(10):973-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2000 Apr;90(4):396-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Mar;10(3):195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19204717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Nov;99(11):1258-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19821729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Sep;186(1):241-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 May 04;6(5):e19379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Sep;189(1):237-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2011 Jul 26;2(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21791579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Sep 16;12(10):703-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21921926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2012 Mar;20(3):131-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22326131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Oct;25(10):1350-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22712506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Jan;64(2):405-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23125359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Feb;14(2):113-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Hum Genet. 2013 Nov;21(11):1277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23531865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9385-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23650365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2013 Sep;13(5):946-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23738873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 May 28;2:e00731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23741619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2014 Mar;27(3):518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24444019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Feb 28;9(2):e90346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24587335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2014 Oct;104(10):1107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24702666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2015 Jan-Feb;106(1):1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2015 Jul;115(1):63-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Aug 05;10(8):e0134880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26244767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 May 20;17:385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27206972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1975 Mar;29(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1984 Nov;38(6):1358-1370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Dec 1;336(6198):435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3057385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1988 Jul;119(3):711-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3402733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1973 May;74(1):175-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4711903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1971 Aug;68(4):581-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5166069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Feb;139(2):1077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7713410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1994 May;72 ( Pt 5):498-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8014060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1996 Sep;144(1):383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8878701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1997 Jul;32(1):60-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9309171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Carlson, Maryn O" sort="Carlson, Maryn O" uniqKey="Carlson M" first="Maryn O" last="Carlson">Maryn O. Carlson</name>
</region>
<name sortKey="Gazave, Elodie" sort="Gazave, Elodie" uniqKey="Gazave E" first="Elodie" last="Gazave">Elodie Gazave</name>
<name sortKey="Gore, Michael A" sort="Gore, Michael A" uniqKey="Gore M" first="Michael A" last="Gore">Michael A. Gore</name>
<name sortKey="Smart, Christine D" sort="Smart, Christine D" uniqKey="Smart C" first="Christine D" last="Smart">Christine D. Smart</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000915 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000915 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28348576
   |texte=   Temporal Genetic Dynamics of an Experimental, Biparental Field Population of Phytophthora capsici.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28348576" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024